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Data Streams
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¢Data Streams & Applications
¢Data Streaming Models & Basic Mathematical Tools
¢Summarization/Sketching Tools for Streams

l Moments

• Loglog Counting for Distinct Items via Flajolet-Martin (FM) Sketch

• Alon-Matias-Szegedy (AMS) Sketch

l Heavy Hitter (Frequent Item) Counting/ Detection in Streams

l Bloom filter and Other Sketches

Roadmap
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Streams
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Website Analytics

• Continuous stream of users (tracked with cookie)
• Many sites signed up for analytics service
• Find hot links / frequent users / click probability / right now

NIPS
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Query Stream

• Item stream

• Find heavy hitters
• Detect trends early (e.g. Obsama bin Laden killed)

• Frequent combinations (cf. frequent items)
• Source distribution

• In real time
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Network traffic analysis

• TCP/IP packets

• On switch with 
limited memory 
footprint

• Realtime analytics

• Busiest connections

• Trends

• Protocol-level data 

• Distributed 
information 
gathering
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Financial Time Series

• time-stamped data stream
• multiple sources
• different time resolution

• real time 
prediction

• missing data
• metadata

(news, quarterly 
reports, 
financial 
background)
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News

• Realtime news stream 
• Multiple sources (Reuters, AP, CNN, ...)
• Same story from multiple sources
• Stories are related
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Data-Stream Management
¢ Traditional DBMS – data stored in finite, persistent data sets 

¢ Data Streams – distributed, continuous, unbounded, rapid, 
time varying, noisy, . . . 

¢ Data-Stream Management – variety of modern applications
l Network monitoring and traffic engineering
l Telecom call-detail records
l Network security 
l Financial applications
l Sensor networks
l Manufacturing processes
l Web logs and clickstreams
l Massive data sets
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Networks Generate Massive Data Streams 

• Broadband
Internet Access

Converged IP/MPLS
Network

PSTN

DSL/Cable
Networks

Enterprise
Networks

• Voice over IP• FR, ATM, IP VPN

Network Operations
Center  (NOC)SNMP/RMON,

NetFlow records

BGP OSPF

Peer

¢ SNMP/RMON/NetFlow data records arrive 24x7 from different parts of the 
network

¢ Truly massive streams arriving at rapid rates
l AT&T collects 600-800 GigaBytes of NetFlow data each day!

¢ Typically shipped to a back-end data warehouse (off site) for off-line 
analysis

Source        Destination     Duration        Bytes       Protocol
10.1.0.2            16.2.3.7             12                20K            http
18.6.7.1            12.4.0.3             16                24K            http
13.9.4.3            11.6.8.2             15                20K            http
15.2.2.9            17.1.2.1             19                40K            http
12.4.3.8            14.8.7.4             26                58K            http
10.5.1.3            13.0.0.1             27                100K          ftp
11.1.0.6            10.3.4.5             32                300K          ftp
19.7.1.2            16.5.5.8             18                80K            ftp

Example NetFlow IP Session Data
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Packet-Level Data Streams

¢ Single 2Gb/sec link;  say avg packet size is 50bytes

¢ Number of packets/sec = 5 million

¢Time per packet = 0.2 microsec

¢ If we only capture header information per packet: src/dest IP, 
time, no. of bytes, etc. – at least 10 Bytes.
lSpace per second is 50MB
lSpace per day is 4.5TB per link
lISPs typically have hundred of links!

¢ Analyzing packet content streams – whole different 
ballgame!!
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Real-Time Data-Stream Analysis 

¢ Need ability to process/analyze network-data streams in real-time
l As records stream in: look at records only once in arrival order!
l Within resource (CPU, memory) limitations of the NOC 

¢ Critical to important Network Management (NM) tasks
l Detect and react to  Fraud, Denial-of-Service attacks, SLA violations
l Real-time traffic engineering to improve load-balancing and utilization

DBMS
(Oracle, DB2)

Back-end Data Warehouse

Off-line analysis – Data 
access  is slow, expensive

Converged IP/MPLS
Network

PSTNDSL/Cable
Networks

Enterprise
Networks

Network Operations
Center  (NOC)

BGP

Peer
R1 R2

R3

What are the top (most frequent) 1000 (source, dest) 
pairs seen by R1 over the last month?

SELECT COUNT (R1.source, R1.dest)
FROM  R1, R2
WHERE R1.source = R2.source

SQL Join Query

How many distinct (source, dest) pairs have 
been seen by both R1 and R2 but not R3?

Set-Expression Query
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IP Network Data Processing
¢ Traffic estimation

l How many bytes were sent between a pair of IP addresses?
l What fraction network IP addresses are active? 
l List the top 100 IP addresses in terms of traffic

¢ Traffic analysis

l What is the average duration of an IP session?
l What is the median of the number of bytes in each IP session?

¢ Fraud detection
l List all sessions that transmitted more than 1000 bytes
l Identify all sessions whose duration was more than twice the normal

¢ Security/Denial of Service 

l List all IP addresses that have witnessed a sudden spike in traffic
l Identify IP addresses involved in more than 1000 sessions
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The Streaming Model

¢ Underlying signal: One-dimensional array X[1…n] with values 
X[i] all initially zero
lMulti-dimensional arrays as well (e.g., row-major)

¢ Signal is implicitly represented via a stream of updates
lj-th update is  <i, c[j]> means: 

• The count of the i-th item in X[ ] changed by a value of c[j]
during the j-th update, i.e.

• X[i] := X[i] + c[j] (c[j] can be >0, <0)

¢Goal:  Compute functions on X[ ] subject to 
lSmall space
lFast processing of updates
lFast function computation
l…
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Example IP Network Signals

¢ Number of bytes (packets) sent by a source IP address during 
the day
l232-sized 1-D array;  increment only

¢ Number of flows between a source-IP, destination-IP address 
pair during the day
l232x232 2-D array; increment only,  aggregate packets into 

flows
¢ Number of active flows per source-IP address

l232-sized 1-D array;  increment and decrement
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Streaming Models: Common Special Cases
¢ Time-Series Model

lOnly j-th update  updates X[j] (i.e., X[j] := c[j] )
e.g. stock ticker/index, velocity data, temperature, etc as functions of time

¢ Cash-Register Model 
l observed an item of type i with count c[j] at the j-th update (or at time j):  

<i, c[j]>
l c[j] is always >= 0  (i.e., increment-only), 
e.g. a TCP packet (instead of UDP one) of  300 bytes arrives at time j
Applicable for query stream, user activity, network traffic, revenue, clicks etc.
lOften with c[j]=1,  so we see a multi-set of items in one pass

¢ Turnstile Model
lMost general streaming model
l c[j] can be >0 or <0 (i.e., increment or decrement,  possibly require     

non-negativity, can consider even moving windowed statistics)
¢ Problem difficulty varies depending on the model

lE.g., MIN/MAX in Time-Series  vs.  Turnstile!
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Data-Stream Processing Model

¢ Approximate answers often suffice, e.g., trend analysis, anomaly 
detection

¢ Requirements for stream synopses
l Single Pass: Each record is examined at most once, in (fixed) arrival order 
l Small Space: Log or polylog in data stream size
l Real-time: Per-record processing time (to maintain synopses) must be low
l Delete-Proof: Can handle record deletions as well as insertions
l Composable: Built in a distributed fashion and combined later

Stream 
Processing
Engine

Approximate Answer
with Error Guarantees
“Within 2% of exact
answer with high
probability”

Stream Synopses
(in memory)

Continuous Data Streams

Query Q

R1

Rk

(GigaBytes) (KiloBytes)
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Data Stream Processing Algorithms
¢ Generally, algorithms compute approximate answers

l Provably difficult to compute answers accurately with 
limited memory

¢ Approximate answers - Deterministic bounds
l Algorithms only compute an approximate answer, but 

bounds on error 
¢ Approximate answers - Probabilistic bounds

l Algorithms compute an approximate answer with high 
probability

• With probability at least         , the computed answer  is 
within a factor     of the actual answer

¢ Single-pass algorithms for processing streams also applicable 
to (massive) terabyte databases!

1−δ
e
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Estimating Moments (Frequency Moments) of 
Data Streams
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Frequency Moments
• Characterize the skewness of distribution

• Sequence of instances
• Instantaneous estimates

• Special cases

• F0 is number of distinct items
• F1 is number of items (trivial to estimate)
• F2 describes ‘variance’, the so-called Gini’s index of 

Homogeneity (used e.g. for database query plans)
• F*∞ = maxi { X[i] }  

  

                                                         Fp = X[i]p

i=1

X

∑    

X[i] =  No. of times (i.e. repetitions) that the i-th type of items has been observed
and X  is the no. of different types of items = dimension of array(vector) X[ ].
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The Heavy Hitters Problem
(aka Frequent Items/ Hot Items/ Elephants Problem)
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Frequent Elements

¢

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,
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Frequent Elements

Applications:

§Networking:  Find “elephant” flows

§Search:  Find the most frequent queries

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,

Zipf law: Typical frequency distributions are highly 
skewed:  with few very frequent elements. 
Say top 10% of elements have 90% of total occurrences.
We are interested in finding the heaviest elements
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Find the Most Frequent Element 
(The       problem in [AMS 96]) 

Exact solution:
§ Create a counter for each distinct type of item on its first occurrence
§ When processing an item, increment the counter for its type

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,

32 12 14 7 6 4

*
¥F
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Top-k and Exact Heavy Hitters Problems
¢ Given a stream of n (possibly duplicate) numbers with values
in          , find the most frequent number

l space is needed (This is the      problem defined in [AMS96])
l Using           space is simple

Variations
¢ Top- problem: finding the    most frequent numbers

l At least as hard as above; still hard even if small freq. error is allowed.
l Using           space will be easy (with an additional heap)

¢ Exact Heavy-Hitters(HH) (aka Frequent or Hot Items) Problem
l Finding the exact list of numbers which show up more than n / k times 

in the stream
l space is also needed [CH08]
e.g. For k = 2, i.e. HH w/ freq >50% of n, consider the following stream:
1,2,3,……M, i, i, i,…. (i.e. 1,2,…,M  followed by M copies of i ’s,)
i is a HH if  i in {1..M}, o.w. i is not a HH but Set Membership test is   

  F¥
*

[CH08] G.Cormode, M.Hadjieleftheriou, “Finding Frequent Items in Data Streams,” VLDB 2008. 



Warm-up: The Majority Problem
The Problem: 
Suppose we have a list of n numbers, representing 
the “votes” of n processors on the result of some 
computation. 
We wish to decide if there is a majority vote (i.e. > 
50%) and what the majority vote is.
• Assume the votes come in as a stream.
• Should use as little memory/storage as possible.
• Should allow the voting to be terminated at any 

time and the Algorithm should identify (if any) the 
majority vote up to the point of closing. 



The Majority Algorithm 
[BoyerMoore81], [FischerSalzburg82]

For each incoming item do:
if (currently there is no stored item)

Store the incoming item and give it a counter initialized to 1 ; 
else if (incoming item == currently stored item) 

counter++ ;
else if (incoming item != currently stored item && counter > 1) 

counter - - ;
else /* incoming != currently stored item && counter == 1*/ 

Delete the currently stored item and its counter ;
Outcome:  
IF there is a majority vote up to this point, it will be the currently stored 
item. /* Note: If there is no majority vote, all bets are off. */
[BoyerMoore81] B.Boyer, J.Moore, “A fast majority vote algorithm,” Tech Report ICSCA-CMP-32, ICS, U.of Texas, Feb. 1981.
[FischerSalzburg82] M.Fischer, S.Salzburg, “Finding a majority among n votes:Sol. to Prob. 81-5,” Journal of Algorithms, 1982



Frequent Elements: Misra & Gries 1982
(Generalization of the Majority Algorithm where k=2 )

Problem: For a stream with n elements, find and count elements which 
shows up more than n/k times
Solution: 
For each incoming element 𝒊
§ If we already have a counter for 𝒊, increment it
§ Else, If there is no counter, but there are fewer than 𝑘 − 1 counters, 

create a counter for  𝒊 initialized to 𝟏.
§ Else, decrease all counters by 𝟏.  Remove 𝟎-value counters.

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,

32 12 14 12 7 12 4 𝑚 = 6
𝑘 = 4
𝑛 = 11



Processing an incoming element  𝒊
§ If we already have a counter for 𝒊, increment it
§ Else, If there is no counter for it, but there are fewer than 𝑘 −
1 counters, create a counter for type 𝒊 initialized to 𝟏.

§ Else, decrease all counters by 𝟏.  Remove 𝟎 −value counters.

32, 12, 14, 32, 7, 12, 32, 7, 6, 12, 4,

Query:  How many times  𝒊 occurred ?
§ If we have  a counter for 𝒊, return its value
§ Else, return 𝟎.

The counter value for each element is clearly an 
under-estimate. What can we say precisely?

Frequent Elements: Misra & Gries 1982
Generalization of the Majority Algorithm where k=2



Misra & Gries 1982 : Analysis
How many decrements to element  𝒊 ’s counter  can we 
have ?

⟺ How many decrement rounds can we have ? 
§ Total number of items in the stream = 𝑛
§ Let 𝑛! be the sum of final values of all counters. 
§ Each round of decrement results in removing  (𝑘 − 1 + 1)

counts from the system (including the current occurrence 
of the input element.), i.e. 𝑘 “uncounted” occurrences.

⇒ There can be at most  
!"!!

#
rounds of decrement

⇒ The counter value of an element is smaller than its true 
count by at most  

𝒏"𝒏!

𝒌
!



Misra & Gries 1982 : Analysis
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Summary of Misra & Gries 1982 
Estimate is smaller than true count by at most  

𝒏#𝒏!

𝒌
⇒ Can get good estimates for 𝑓𝑖 even with one single pass 
when the number of occurrences ≫ %#%!

&

§ By setting 𝑘 = 1/ℇ, the estimation error will be bound ( < 𝑛ℇ ).
§ The error bound can be readily computed: Can track 𝑛 using simple 

count ;  know 𝑛’ (from list of final counter values) and 𝑘 is a given 
parameter.

§ Even using the 1st pass algorithm alone would work well in practice 
because typical frequency distributions have few very popular 
elements due to “Zipf law” ;

§ Cannot handle “-ve” arrival though !
[MG82] J. Misra, D. Gries, “Finding repeated elements,” Science of Computer Programming, No. 2, 1982,    

http://www.cs.utexas.edu/users/misra/scannedPdf.dir/FindRepeatedElements.pdf
.



Merging two Misra Gries Summaries 
[ACHPWY12]

Basic merge:
§ If an element 𝑖 is in both structures, keep one 

counter with sum of the two counts
§ If an element 𝑖 is in one structure only, keep the 

counter

Reduce: If there are more than 𝒌 − 𝟏 counters
§ Take the 𝑘th largest counter
§ Subtract its value from all other counters
§ Delete non-positive counters

[ACHPWY12] Agarwal, Cormode, Huang, Phillips, Wei, and Yi, Mergeable Summaries, PODS 2012.



Merging two Misra Gries Summaries

7 6 1432 12 14

32 12 14 7 6

Basic Merge: e.g. 𝑘 = 4



Merging two Misra Gries Summaries

32 12 14 7 6

4th largest

Reduce since there are more than (𝒌 − 𝟏) = 𝟑 counters :
§ Take the 𝑘th = 4th largest counter
§ Subtract its value (2) from all other counters
§ Delete non-positive counters

e.g. 𝑘 = 4



Merging MG Summaries: Correctness

Claim: Final summary has at most (𝑘 − 1) counters
Proof: We subtract the 𝑘th largest from everything, 
so at most the (𝑘 − 1) largest counters can remain 
positive.

Claim: For each type of element, final summary 
count is smaller than true count by at most !"!

!

#



Merging MG Summaries: Correctness
Claim: For each element, final summary count is 
smaller than true count by at most !"!!

#

Part 1:
Total occurrences: 𝑛'
In structure: 𝑛'′
Count loss: ≤ 𝒏𝟏#𝒏𝟏!

𝒌

Part 2:
Total occurrences: 𝑛(
In structure: 𝑛(′
Count loss: ≤ 𝒏𝟐#𝒏𝟐!

𝒌

Proof: “Counts” for element type 𝑖 can be  lost in part1, 
part2, or in the reduce component of the merge
We add up the bounds on the  losses

Reduce loss is at most 𝑿 = 𝒌th largest counter



Merging MG Summaries: Correctness

Part 1:
Total occurrences: 𝑛'
In structure: 𝑛'′
Count loss: ≤ 𝒏𝟏#𝒏𝟏!

𝒌

Part 2:
Total occurrences: 𝑛(
In structure: 𝑛(′
Count loss: ≤ 𝒏𝟐#𝒏𝟐!

𝒌

⇒ “Count loss” of one element type is at most
𝒏𝟏"𝒏𝟏&

𝒌
+ 𝒏𝟐"𝒏𝟐&

𝒌
+ 𝑿

Reduce loss is at most 𝑿 = 𝒌th largest counter



Merging MG Summaries: Correctness

⇒ at most
𝑛 − 𝑛′
𝑘

uncounted occurrences

Counted occurrences in structure: 
§ After basic merge and before reduce: 𝑛'! + 𝑛(′
§ After reduce: 𝑛!

Claim:  𝑛'( + 𝑛)( − 𝑛( ≥ 𝑘 𝑿
Proof: 𝑋 are erased in the reduce step in each of the 𝑘
largest counters.  Maybe more in smaller counters.

“Count loss” of each element type is at most:
𝒏𝟏!𝒏𝟏#

𝒌
+ 𝒏𝟐!𝒏𝟐#

𝒌
+ 𝑿 ≤ 𝟏

𝒌
𝒏𝟏 + 𝒏𝟐 − 𝒏#
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Networking Applications of Heavy-Hitter Algorithms
Detection and Counting of:

¢ Super/Top Spreaders
l Find hosts who are spreading a large number of flows
l Scanning, worm spreading, under attack, P2P nodes, web server, 

proxy, …

¢ Super/Top Scanners
l Find hosts who are spreading a large number of small flows
l More suspicious than top spreaders

¢ Popular types of packets/flows/queries/search-words

¢ Flow Size Distribution/ Iceberg Histogram
l How many flows are there having N >> 1 packets?
l Traffic engineering, anomaly detection
l Algorithm [Kumar04] extending the linear probabilistic counting algorithm 

[Whang90]
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¢ Elephant flow detection and counting
l Find flow with large size
l Billing and accounting
l Sample and hold algorithm [Estan02] and 
l The Run-based schemes, e.g. co-incidence or 2-in-a-row, [Kodialam04], 

[Hao04], [Hao05].

¢ Flow entropy
l Calculate the entropy of flows
l Measures information randomness
l Traffic engineering, anomaly detection, clustering
l Algorithm [Lall06] based on estimating frequency moments algorithm 

[AMS96]

¢ OD flow entropy
l Calculate the entropy of OD flows
l Traffic engineering, network wide anomaly detection
l Algorithm [Zhao07] based on estimating frequency moments algorithm 

[Indyk00]

More Networking Applications of 
Data Stream Algorithms
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Backup Slides
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Counting Distinct Items in Data Streams (F0)
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Recap: Definition of Frequency Moments
• Characterize the skewness of distribution

• Sequence of instances
• Instantaneous estimates

• Special cases

• F0 is number of distinct items
• F1 is number of items (trivial to estimate)
• F2 describes ‘variance’, the so-called Gini’s index of 

Homogeneity (used e.g. for database query plans)
• F*∞ = maxi { X[i] }  

  

                                                         Fp = X[i]p

i=1

X

∑    

X[i] =  No. of times (i.e. repetitions) that the i-th type of items has been observed
and X  is the no. of different types of items = dimension of array(vector) X[ ].
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Distinct Element Counting Problem (F0)
¢ Given a stream of (possibly duplicated) elements, 

count the number of distinct elements
l Example 1

• a, b, c, a, d, e, f, c, g, a
• Total number is 10, while distinct cardinality is 7

l Example 2
• Count the distinct records in a column of a large table

¢ Classical algorithms
l Linear probabilistic counting (Hit test based) algorithm 
l Bit pattern based algorithms
l Order statistics based algorithms
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Linear probabilistic counting algorithm

• Use a     bit bitmap
• Use a uniform hash function     to map each value    to

• Set                   when v appears in stream
• After seeing all elements

• The expected number of 0's is:
• The distinct number can be estimated by                     , 

where     is the actual number of empty bits in 
• Why it is called linear?      

[Whang[90] A linear-time probabilistic counting algorithm for database applications,
Whang, et al., ACM Transaction on Database Systems, 1990

1 11 1 1 1 0 …   …1 0 1 1 0 0 0 10 0 0 0

   m ∼ Ω(n)
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• Assume the no. of distinct items is at most N

• Use a uniform hash func. h(v) to map each item v to a 
binary number in the range of [0, 2Log2(N) – 1]

• Consider the no. of consecutive “1”’s starting from the LSB before a “0”
appears in the binary value output by the hash

• Equivalently, we can track the bit-position, say r, of the rightmost “0” in 
the hash output ; corresponding Prob. = 1/2r

0 1 0 0 1 1 0 1

1 0 0 1 1 0 1 1

0 0 1 0 1 1 1 1

1/23

Prob{ }

Counting Number of Distinct Items ( F0 ) via 
Loglog-Counting by Flajolet et al

1/25

1/22
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LogLog Counting for Distinct Items
¢ Intuitively, the maximum number of consecutive “1”’s (starting 

from the LSB) among the hash output values of ALL of
observed items indicates the magnitude of     , i.e. # of distinct 
items observed ! 

¢ More importantly, repetitions of same item do not matter !

¢ Let     be the maximum of the bit-position of the rightmost ”0” among 
the hash outputs of    distinct items (where LSB = bit-position 1).
l In other words,        = 1 + maximum # of consecutive “1”’s (starting from the LSB) 

observed over the hash output of     distinct items  

¢ It can be shown that [DF03]:

¢ As we only need to track the maximum value of R observed so far, 
the space complexity of the algorithm is merely LogLog N !

¢ Problem: Deviation of     from its expectation           may be very large

¢ In fact,                      !   How to reduce the deviation of    ? 

  
E R⎡⎣ ⎤⎦ ≈ 1.3+ log2 n 

 R

 R

 R  
E R⎡⎣ ⎤⎦

  
E 2R⎡⎣ ⎤⎦ → ∞

[DF03] M. Durand and P. Flajolet, “Loglog counting of large cardinalities,” European Symposium on Algorithms 
(ESA), 2003.

 R
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Loglog Counting (cont’d)
¢ Stochastic Averaging

l Split the incoming streams into m sub-streams to obtain m different 
(random) values of Rj , one for each sub-stream.

l The split can be done by using another uniform hash function
• What is the impact of potential temporal correlation in the original 

streams though ?  e.g. items of the same type always arrive in a batch ?   
l In [DF03], an estimate of n is obtained based on taking arithmetic 

average of the Rj’s as follows:

       n̂ :=αmm ⋅2
1
m

Rj
j=1

m

∑
 with standard est. error ≈1.30/ m

where αm := Γ(−1
m
) ⋅1− 2

1/m

log2
⎛
⎝⎜

⎞
⎠⎟

−m

and   Γ(s) := 1
s

e− tt s dt
0

∞

∫

[DF03] M. Durand and P. Flajolet, “Loglog counting of large cardinalities,” European Symposium on Algorithms 
(ESA), 2003.
[FM85] P. Flajolet and G.N. Martin, “Probabilistic Counting for Database Applications,” 
Journal of Computer and System Sciences Vol. 31, No. 2, 1985. 
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HyperLogLog and more…
¢ HyperLogLog

l In [FFGM07], Harmonic Mean (H.M.) instead of Geometric Mean is 
used in the estimator to yield the so-called HyperLogLog estimator:

l Accuracy Comparison – for upto N=109 distinct input items:

l Further Refinements and Practical Implementation in [HNH13].

[FFGM07] P. Flajolet et al., “HyperLogLog: the analysis of a near-optimal cardinality estimation algorithm,” 2007 
Conference on Analysis of Algorithms, AofA 07. 

  

n̂ :=  
βmm2

2−Rj

j=1

m

∑
 with βm := m log2

2 + u
1+ u

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟

m

du
0

∞

∫
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

−1

and std. est. error ≈ 1.03/ m

[HNH13] S. Heule, M. Nunkesser, A.Hall, “HyperLogLog in Practice: Algorithmic Engineering of a State of the 
Art Cardinality Estimation Algorithm,” EDBT/ICDT 2013.
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Other Order statistics based Algorithms
for Distinct Item Counting

¢ Use a uniform hash function     to map each item (value)    to 
a real number

¢ Find the minimum hashed result 

¢ Routine Computation* can show that

¢ can then be estimated from     by method of moments
l Inverse [2002], square root [2005], logarithm [2006], …

¢ Stochastic averaging is needed

¢ Recently, Cohen et al [CKY] have proposed  a Unified 
scheme to generalize “Extreme Order based” Distinct Item 
Counting schemes, including Hyperloglog, Loglog, MinCount, 
etc, to support Weighted Distinct Item Counting ! 

* https://research.neustar.biz/2012/07/09/sketch-of-the-day-k-minimum-values/
[CKY14] R.Cohen, L.Katzir, A.Yehezkel, “A unified scheme for generalizing cardinality estimators to sum 
aggregation,” Information Processing Letters, 2014.
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Problems and Algorithms in Networking
¢ Problems that use “Distinct element counting”:

l Flow Counting
l Traffic (OD Flow) Matrices
l Various Production systems in Google including Sawzall, Dremel 

and PowerDrill all require the estimation of the cardinality of some 
LARGE data sets [HNH13]. 

• e.g., PowerDrill needs to estimate the number of distinct search 
queries sent to Google.com over a time period
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Flow Counting
¢ A flow is defined as a combination:

l f=<src address, dst address, src port, dst port, protocol>

¢ Total flow number can indicate
l Link utilization
l DDoS
l Flash crowds
l Port scan
l Worm spreading

¢ Well captured by "distinct element counting”

¢ [Estan03] in SIGCOMM (networking) reconsiders this problem 
and extends Linear probabilistic Counting [Whang90]
l Combine Linear probabilistic Counting with sampling to reduce memory 

consumption
l Better than Probabilistic Counting, almost the same as 

LogLog/HyperLogLog ; N.B.: Loglog/ HyperLoglog estimates poorly for 
small N 
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Traffic (OD Flow) Matrices

¢ Consider an ISP network with many POP's

¢ How much traffic is there from POP A to POP B?

¢ This information is useful
l Traffic engineering
l Network plan and provision
l Network wide anomaly detection

¢ Traditional way
l Collect link volume statistics at all (or at least a large portion of) 

POP's, combine with routing information, and use various traffic 
model assumptions (what are the disadvantages?)

l Error around 20%

¢ Streaming way [ZKWX05]
l Error around 3% (counting packets or flows)

A

B
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¢ We can get
: the set of packets originating from A
: the set of packets destined to B

¢ By tracking m Rj ’s at each node, we can estimate:
: number of pkts/flows originating from A, by
: number of pkts/flows destined to B, by

¢ How can we get                                  ? 

Traffic Matrices

A

B

  

BA =  the buckets (array) holding the  m values of Rj 's at node A,  

          each denoted by Rj
A  for j = 1,2,...,m

  

Let BB  be the buckets (array) holding 

the  m values of Rj 's at node B,  

each denoted by Rj
B  for j = 1,2,...,m



Stream 64

¢ We can get
: the set of packets originating from A
: the set of packets destined to B

¢ By tracking m Rj ’s at each node, we can estimate:
: number of pkts/flows originating from A, by
: number of pkts/flows destined to B, by

¢ How can we get                                  ? 

Traffic Matrices

A

B

  

BA =  the buckets (array) holding the  m values of Rj 's at node A,  

          each denoted by Rj
A  for j = 1,2,...,m

  

Let BB  be the buckets (array) holding 

the  m values of Rj 's at node B,  

each denoted by Rj
B  for j = 1,2,...,m
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¢ We can get
: the set of packets originating from A
: the set of packets destined to B

¢ By tracking m Rj ’s at each node, we can estimate:
: number of pkts/flows originating from A, by
: number of pkts/flows destined to B, by

¢ How can we get                                  ? 

Traffic Matrices

A

B

  

BA =  the buckets (array) holding the  m values of Rj 's at node A,  

          each denoted by Rj
A  for j = 1,2,...,m

  

Let BB  be the buckets (array) holding 

the  m values of Rj 's at node B,  

each denoted by Rj
B  for j = 1,2,...,m

  

PA ∪ PB  can be estimated via Loglog counting 

with  Rj
A∪B = max(Rj

A , Rj
B ) for j = 1,2,...m
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Bloom filtersCount min sketch
https://sites.google.com/site/countminsketch/

Bloom Filter

https://sites.google.com/site/countminsketch/
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Beyond Heavy Hitters

• Check for previously seen items
• but don’t need to have counts, just 

existence
• Check for frequency estimate
• but don’t want to store labels
• but want estimate for all items (not just HH)
• but want to be able to aggregate
• but want turnstile computation

Bloom filter, Count-Min sketch
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Bloom Filter
• Bit array b of length n
• insert(x): for all i set bit b[h(x,i)] = 1
• query(x): return TRUE if for all i b[h(x,i)] = 1
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Bloom Filter
• Bit array b of length n
• insert(x): for all i set bit b[h(x,i)] = 1
• query(x): return TRUE if for all i b[h(x,i)] = 1

• Only returns TRUE if all k bits are set
• No false negatives but false positives possible
• Probability that an arbitrary bit is set

• Probability of false positive (approx. indep.)
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Bloom Filter
• Minimizing k to minimize false positive rate

This vanishes for
with a false positive rate of 2-k

• More refined analysis & details, e.g. in the 
Mitzenmacher & Broder 2004 tutorial.

• Use                    bits of space per inserted key 
where    is the false positive rate of the BF.

( )e/1log44.1 2

e
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Cool things to do with a Bloom Filter
• Bloom filter of union of two sets by OR

• Parallel construction of Bloom filters
• Time-dependent aggregation
• Fast approximate set union 

(bitmap operation rather than set manipulation)
• Also use it to halve bit resolution of Bloom filter

• by “OR”ing the 1st half of the BF with its 2nd half 

0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1

1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1

1 0 1 0 1 1 1 0 1 0 1 1 0 1 0 1 1 1
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Cool things to do with a Bloom Filter
• Set intersection via AND

• No false negatives
• More false positives than building from scratch
• Use bits to estimate size of set union/intersection

0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1

1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1

=
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Cool things to do with a Bloom Filter
• Set intersection via AND

• No false negatives
• More false positives than building from scratch
• Use bits to estimate size of set union/intersection

0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1

1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
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Cool things to do with a Bloom Filter
• Set intersection via AND

• No false negatives
• More false positives than building from scratch
• Use bits to estimate size of set union/intersection

0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1

1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 1

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
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Counting Bloom Filter
• Plain Bloom filter doesn’t allow removal

• insert(x): for all i set bit b[h(x,i)] = 1
we don’t know whether this was set before

• query(x): return TRUE if for all i b[h(x,i)] = 1
• Counting Bloom filter keeps track of inserts

• query(x): return TRUE if for all i b[h(x,i)] > 0
• insert(x): if query(x) = FALSE (don’t insert twice)

for all i increment b[h(x,i)] = b[h(x,i)] + 1
• remove(x): if query(x) = TRUE (don’t remove absents)

for all i decrement b[h(x,i)] = b[h(x,i)] - 1

0 0 1 0 0 1 1 0 1 0 0 0 0 1 0 1 1 1

only needs
log log m bits
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Count Min sketch
https://sites.google.com/site/countminsketch/

https://sites.google.com/site/countminsketch/
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• Data Structure

• Algorithm

d hash functions

h1(x)
h2(x)
h3(x)
h4(x)

m bins

xxxx

like Bloom filter but 
with counters

supports turnstile

Count Min (CM) Sketch
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Count Min (CM) Sketch
• Data Structure

• Guarantees
• Approximation quality is

d hash functions

h1(x)
h2(x)
h3(x)
h4(x)

m bins
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Basic Tools: Tail Inequalities 
¢ General bounds on tail probability of a random variable 

(that is, probability that a random variable deviates far 
from its expectation)

¢ Basic Inequalities: Let X be a non-negative random 
variable with expectation       and variance Var[X]. Then for 
any 

¢ Sub.                         into the Markov Inequality, we have: 

µe µ µe

Probability
distribution

Tail probability

ε > 0
µ

Markov:

Chebyshev:
  
Pr(| Y − µY |  ≥ µYε) ≤

Var[Y ]
µY

2ε 2

Pr(X ≥ ε ) ≤ µ
ε

  
X = Y − E(Y )( )2
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• Data Structure

• Bin value lower bound by actual target item count
• Each bin is updated whenever we see the target item
• bin value >= no. of times the target item occurs
• It is OK to take minimum among the d bins which the target item is 

mapped to

¢ Expectation of over-count
• Prob. of incrementing a bin at random (by other items) is 1/m

¢=> Expected overestimate is n/m.

Proof

d hash functions

h1(x)
h2(x)
h3(x)
h4(x)

m bins
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• Markov inequality on random variable:

• Minimum boosts probability exponentially
(only need to ensure that there’s at least one 
random variable which satisfies the condition)

Proof
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Properties of the count min sketch
• Linear statistics

• Sketch of two sets is sum of sketches
• We can aggregate time intervals

• Sketch of lower resolution is linear function
• We can compress further at a later stage
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Estimating the 2nd moment ( F2 ) 
of Data Streams
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Recap: Definition of Frequency Moments
• Characterize the skewness of distribution

• Sequence of instances
• Instantaneous estimates

• Special cases

• F0 is number of distinct items
• F1 is number of items (trivial to estimate)
• F2 describes ‘variance’, the so-called Gini’s index of 

Homogeneity (used e.g. for database query plans)
• F*∞ = maxi { X[i] }  

  

                                                         Fp = X[i]p

i=1

X

∑    

X[i] =  No. of times (i.e. repetitions) that the i-th type of items has been observed
and X  is the no. of different types of items = dimension of array(vector) X[ ].
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Why F2 (i.e. L2-norm of the vector/array X[ ] ) ?
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The Alon-Matias-Szegedy (AMS) Sketch for F2
[AMS96] - Godel Prize winner in 2005

Choose r1,r2 ,...,rm  to be i.i.d. random variables with:  

                         Pr[ri =1] = Pr[ri = −1] = 1
2

Maintain   Z = ri X [i]
i=1

X

∑     under increments/decrements to X [i],  

e.g. when 3 new items of type i  arrive, update Z := Z + 3ri

Algorithm I:        Y = Z 2  =  ri X [i]
i=1

X

∑
⎛

⎝
⎜

⎞

⎠
⎟

2

 

"Claim":  Y   approximates  F2 !  X [i]2

i=1

X

∑  with "good chances".
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Error Analysis (1/3) 

  

Approach:  
Use Chebyshev inequality to bound the error for using Y  to estimate F2

=> Need to derive the Expectation and Variance of Y .

E[Y ] = E[Z 2 ] = E ri X[i]
i
∑⎛⎝⎜

⎞
⎠⎟

2⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

       = E ri X[i]rj X[ j]
j
∑

i
∑
⎡

⎣
⎢

⎤

⎦
⎥ = X[i]X[ j]

j
∑

i
∑ E ri ⋅ rj

⎡⎣ ⎤⎦

We have:

For  i ≠ j,  E ri ⋅ rj
⎡⎣ ⎤⎦ = E ri⎡⎣ ⎤⎦ ⋅ E rj

⎡⎣ ⎤⎦ = 0 ⇒ those terms will disappear

For i = j,  E ri ⋅ rj
⎡⎣ ⎤⎦ = E ri ⋅ ri⎡⎣ ⎤⎦ = 1

Therefore

                 E[Y ] = E[Z 2 ] = X[i]2

i
∑ = F2

⇒ Y  is an unbiased estimator of F2
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Error Analysis (2/3)
The 2nd moment of Y = The 2nd moment of Z 2 = E Z 4⎡⎣ ⎤⎦

But    Z 4 = ri
i
∑ X [i]⎛

⎝⎜
⎞
⎠⎟

rj
j
∑ X [ j]

⎛

⎝⎜
⎞

⎠⎟
rk

k
∑ X [k]

⎛
⎝⎜

⎞
⎠⎟

rl
l
∑ X [l]⎛

⎝⎜
⎞
⎠⎟

 

This can be decomposed into the sum of:

ri X [i]( )
i
∑ 4

⇒ Expectation = X [i]4

i
∑ ;

4
2

⎛

⎝⎜
⎞

⎠⎟
ri ⋅ rj ⋅ X [i]⋅ X [ j]( )

i< j
∑

2
⇒ Expectation = 6 X [i]2 X [ j]2

i< j
∑ ;

The remaining terms involve single multiplier
 ri ⋅ X [i]  (e.g., r1X [1]r2X [2]r2X [2]r3X [3])⇒ Expectation = 0

Therefore, 

E Z 4⎡⎣ ⎤⎦ = X [i]4

i
∑ + 6 X [i]2 X [ j]2

i< j
∑

Var Y( ) =Var Z 2( ) = E Z 4⎡⎣ ⎤⎦ − E
2 Z 2⎡⎣ ⎤⎦ = X [i]4

i
∑ + 6 X [i]2 X [ j]2 −

i< j
∑ X [i]2

i
∑⎛⎝⎜

⎞
⎠⎟

2

= X [i]4

i
∑ + 6 X [i]2 X [ j]2 −

i< j
∑ X [i]4

i
∑ − 2 X [i]2 X [ j]2

i< j
∑ = 4 X [i]2 X [ j]2

i< j
∑ ≤ 2 X [i]2

i
∑⎛⎝⎜

⎞
⎠⎟

2

= 2F2
2
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Error Analysis (3/3)
Thus, we have an estimator Y = Z 2   where     E Y⎡⎣ ⎤⎦ = X [i]2      and    Var Y⎡⎣ ⎤⎦

i
∑ =σ 2 ≤ 2 X [i]2

i
∑⎛⎝⎜

⎞
⎠⎟

2

Recall the Chebyshev Inequality:

               Pr W − E W⎡⎣ ⎤⎦ ≥ cσW⎡
⎣

⎤
⎦ ≤1/ c2....................(*)

Consider the following Algorithm:

1. Maintain Z1,Z2 ,...ZK (and thus Y1,  Y2 ,...,YK  ); define Y ' = Yk
k=1

K

∑ / K

2. Compute E Y '⎡⎣ ⎤⎦ = K ⋅E Y⎡⎣ ⎤⎦ / K = X [i]2

i
∑

3. Compute Var Y '⎡⎣ ⎤⎦ =σ '2 = 1
K
Var Y⎡⎣ ⎤⎦ =

1
K
σ 2 ≤ 2

K
X [i]2

i
∑⎛⎝⎜

⎞
⎠⎟

2

Sub.  W  = Y '   into (*), we have the following guarantee on estimation error:

                                 Pr Y '− X [i]2

i
∑ ≥ c 2

K
X [i]2

i
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
≤1/ c2 ⇔ Pr

Y '− F2

F2

≥ c 2
K

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
≤1/ c2

Setting c to some constant according to the desirable error requirement and K =O 1/ ε 2( )  to yield: 

An (1± ε )-approximation with probability 1/ c2 ,     e.g., with c =10 and ε = 0.05, we can guarantee 

a less-than 5% estimation error at least 99% of the time by setting K = 10 2 / 0.05( )2

= 80,000.
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¢ Elephant flow detection and counting
l Find flow with large size
l Billing and accounting
l Sample and hold algorithm [Estan02] and 
l The Run-based schemes, e.g. co-incidence or 2-in-a-row, [Kodialam04], 

[Hao04], [Hao05].

¢ Flow entropy
l Calculate the entropy of flows
l Measures information randomness
l Traffic engineering, anomaly detection, clustering
l Algorithm [Lall06] based on estimating frequency moments algorithm 

[AMS96]

¢ OD flow entropy
l Calculate the entropy of OD flows
l Traffic engineering, network wide anomaly detection
l Algorithm [Zhao07] based on estimating frequency moments algorithm 

[Indyk00]

More Networking Applications of 
Data Stream Algorithms



Stream 91Source: Wikipedia (Japanese rock garden)

Questions?



Further reading
• Muthu Muthukrishnan’s tutorial

http://www.cs.rutgers.edu/~muthu/stream-1-1.ps
• Alon Matias Szegedy

http://www.sciencedirect.com/science/article/pii/S0022000097915452
• Count-Min sketch

https://sites.google.com/site/countminsketch/
• Bloom Filter survey by Broder & Mitzenmacher

http://www.eecs.harvard.edu/~michaelm/postscripts/im2005b.pdf
• Metwally, Agrawal, El Abbadi (space saving sketch)

http://www.cs.ucsb.edu/research/tech_reports/reports/2005-23.pdf
• Berinde, Indyk, Cormode, Strauss (space optimal bounds for space saving)

http://www.research.att.com/people/Cormode_Graham/library/publications/BerindeC
ormodeIndykStrauss10.pdf

• Graham Cormode’s tutorial
http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf

• Flajolet-Martin 1985
http://algo.inria.fr/flajolet/Publications/FlMa85.pdf

http://www.sciencedirect.com/science/article/pii/S0022000097915452
https://sites.google.com/site/countminsketch/
http://www.cs.ucsb.edu/research/tech_reports/reports/2005-23.pdf
http://www.research.att.com/people/Cormode_Graham/library/publications/BerindeCormodeIndykStrauss10.pdf
http://dimacs.rutgers.edu/~graham/pubs/papers/sk.pdf
http://algo.inria.fr/flajolet/Publications/FlMa85.pdf
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